MakeItFrom.com
Menu (ESC)

C31400 Bronze vs. EN 1.4854 Stainless Steel

C31400 bronze belongs to the copper alloys classification, while EN 1.4854 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C31400 bronze and the bottom bar is EN 1.4854 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 29
45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
78
Shear Strength, MPa 180 to 240
520
Tensile Strength: Ultimate (UTS), MPa 270 to 420
750
Tensile Strength: Yield (Proof), MPa 78 to 310
340

Thermal Properties

Latent Heat of Fusion, J/g 200
330
Maximum Temperature: Mechanical, °C 180
1170
Melting Completion (Liquidus), °C 1040
1370
Melting Onset (Solidus), °C 1010
1330
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 180
11
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 43
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
34
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
5.7
Embodied Energy, MJ/kg 42
81
Embodied Water, L/kg 310
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 59
270
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 420
280
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.7 to 13
26
Strength to Weight: Bending, points 11 to 14
23
Thermal Diffusivity, mm2/s 54
2.9
Thermal Shock Resistance, points 9.6 to 15
18

Alloy Composition

Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 87.5 to 90.5
0
Iron (Fe), % 0 to 0.1
33.6 to 40.6
Lead (Pb), % 1.3 to 2.5
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.7
34 to 36
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.2 to 2.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 5.8 to 11.2
0
Residuals, % 0 to 0.4
0