MakeItFrom.com
Menu (ESC)

C31400 Bronze vs. EN 1.7383 Steel

C31400 bronze belongs to the copper alloys classification, while EN 1.7383 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C31400 bronze and the bottom bar is EN 1.7383 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 29
20 to 23
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
74
Shear Strength, MPa 180 to 240
350 to 380
Tensile Strength: Ultimate (UTS), MPa 270 to 420
560 to 610
Tensile Strength: Yield (Proof), MPa 78 to 310
300 to 400

Thermal Properties

Latent Heat of Fusion, J/g 200
260
Maximum Temperature: Mechanical, °C 180
460
Melting Completion (Liquidus), °C 1040
1470
Melting Onset (Solidus), °C 1010
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 180
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 43
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
3.9
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 42
23
Embodied Water, L/kg 310
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 59
110
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 420
240 to 420
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.7 to 13
20 to 22
Strength to Weight: Bending, points 11 to 14
19 to 20
Thermal Diffusivity, mm2/s 54
11
Thermal Shock Resistance, points 9.6 to 15
16 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 87.5 to 90.5
0 to 0.3
Iron (Fe), % 0 to 0.1
94.3 to 96.6
Lead (Pb), % 1.3 to 2.5
0
Manganese (Mn), % 0
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.7
0 to 0.3
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 5.8 to 11.2
0
Residuals, % 0 to 0.4
0