MakeItFrom.com
Menu (ESC)

C31400 Bronze vs. CC492K Bronze

Both C31400 bronze and CC492K bronze are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C31400 bronze and the bottom bar is CC492K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.8 to 29
14
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 270 to 420
280
Tensile Strength: Yield (Proof), MPa 78 to 310
150

Thermal Properties

Latent Heat of Fusion, J/g 200
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 1040
1000
Melting Onset (Solidus), °C 1010
900
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 180
73
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
13
Electrical Conductivity: Equal Weight (Specific), % IACS 43
13

Otherwise Unclassified Properties

Base Metal Price, % relative 29
33
Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 42
54
Embodied Water, L/kg 310
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 59
33
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 420
100
Stiffness to Weight: Axial, points 7.1
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.7 to 13
8.7
Strength to Weight: Bending, points 11 to 14
11
Thermal Diffusivity, mm2/s 54
23
Thermal Shock Resistance, points 9.6 to 15
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 87.5 to 90.5
83 to 89
Iron (Fe), % 0 to 0.1
0 to 0.2
Lead (Pb), % 1.3 to 2.5
2.5 to 3.5
Nickel (Ni), % 0 to 0.7
0 to 2.0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 5.8 to 11.2
1.5 to 3.0
Residuals, % 0 to 0.4
0