MakeItFrom.com
Menu (ESC)

C31400 Bronze vs. R30556 Alloy

C31400 bronze belongs to the copper alloys classification, while R30556 alloy belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C31400 bronze and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 6.8 to 29
45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
81
Shear Strength, MPa 180 to 240
550
Tensile Strength: Ultimate (UTS), MPa 270 to 420
780
Tensile Strength: Yield (Proof), MPa 78 to 310
350

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1040
1420
Melting Onset (Solidus), °C 1010
1330
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 180
11
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 43
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
70
Density, g/cm3 8.8
8.4
Embodied Carbon, kg CO2/kg material 2.6
8.7
Embodied Energy, MJ/kg 42
130
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 59
290
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 420
290
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.7 to 13
26
Strength to Weight: Bending, points 11 to 14
22
Thermal Diffusivity, mm2/s 54
2.9
Thermal Shock Resistance, points 9.6 to 15
18

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.5
Boron (B), % 0
0 to 0.020
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
21 to 23
Cobalt (Co), % 0
16 to 21
Copper (Cu), % 87.5 to 90.5
0
Iron (Fe), % 0 to 0.1
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Lead (Pb), % 1.3 to 2.5
0
Manganese (Mn), % 0
0.5 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.7
19 to 22.5
Niobium (Nb), % 0
0 to 0.3
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0.2 to 0.8
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Tungsten (W), % 0
2.0 to 3.5
Zinc (Zn), % 5.8 to 11.2
0.0010 to 0.1
Residuals, % 0 to 0.4
0