MakeItFrom.com
Menu (ESC)

C31600 Bronze vs. S44725 Stainless Steel

C31600 bronze belongs to the copper alloys classification, while S44725 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C31600 bronze and the bottom bar is S44725 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.7 to 28
22
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
81
Shear Strength, MPa 170 to 270
320
Tensile Strength: Ultimate (UTS), MPa 270 to 460
500
Tensile Strength: Yield (Proof), MPa 80 to 390
310

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 1010
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 33
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
15
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 43
44
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 58
99
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 690
240
Stiffness to Weight: Axial, points 7.1
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.5 to 15
18
Strength to Weight: Bending, points 11 to 15
18
Thermal Diffusivity, mm2/s 42
4.6
Thermal Shock Resistance, points 9.4 to 16
16

Alloy Composition

Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
25 to 28.5
Copper (Cu), % 87.5 to 90.5
0
Iron (Fe), % 0 to 0.1
67.6 to 73.5
Lead (Pb), % 1.3 to 2.5
0
Manganese (Mn), % 0
0 to 0.4
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0.7 to 1.2
0 to 0.3
Niobium (Nb), % 0
0 to 0.26
Nitrogen (N), % 0
0 to 0.018
Phosphorus (P), % 0.040 to 0.1
0 to 0.040
Silicon (Si), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0 to 0.26
Zinc (Zn), % 5.2 to 10.5
0
Residuals, % 0 to 0.4
0