MakeItFrom.com
Menu (ESC)

C32000 Brass vs. 7049A Aluminum

C32000 brass belongs to the copper alloys classification, while 7049A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C32000 brass and the bottom bar is 7049A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 6.8 to 29
5.0 to 5.7
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 41
27
Shear Strength, MPa 180 to 280
340 to 350
Tensile Strength: Ultimate (UTS), MPa 270 to 470
580 to 590
Tensile Strength: Yield (Proof), MPa 78 to 390
500 to 530

Thermal Properties

Latent Heat of Fusion, J/g 190
370
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 1020
640
Melting Onset (Solidus), °C 990
430
Specific Heat Capacity, J/kg-K 380
850
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 19
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
40
Electrical Conductivity: Equal Weight (Specific), % IACS 37
120

Otherwise Unclassified Properties

Base Metal Price, % relative 28
10
Density, g/cm3 8.7
3.1
Embodied Carbon, kg CO2/kg material 2.6
8.2
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 310
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
28 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 680
1800 to 1990
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
44
Strength to Weight: Axial, points 8.8 to 15
52 to 53
Strength to Weight: Bending, points 11 to 16
50 to 51
Thermal Diffusivity, mm2/s 47
50
Thermal Shock Resistance, points 9.5 to 16
25

Alloy Composition

Aluminum (Al), % 0
84.6 to 89.5
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 83.5 to 86.5
1.2 to 1.9
Iron (Fe), % 0 to 0.1
0 to 0.5
Lead (Pb), % 1.5 to 2.2
0
Magnesium (Mg), % 0
2.1 to 3.1
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.25
0
Silicon (Si), % 0
0 to 0.4
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 10.6 to 15
7.2 to 8.4
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15