MakeItFrom.com
Menu (ESC)

C32000 Brass vs. AISI 301LN Stainless Steel

C32000 brass belongs to the copper alloys classification, while AISI 301LN stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C32000 brass and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 29
23 to 51
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 180 to 280
450 to 670
Tensile Strength: Ultimate (UTS), MPa 270 to 470
630 to 1060
Tensile Strength: Yield (Proof), MPa 78 to 390
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 1020
1430
Melting Onset (Solidus), °C 990
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 37
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 28
13
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 42
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 680
180 to 1520
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8 to 15
22 to 38
Strength to Weight: Bending, points 11 to 16
21 to 30
Thermal Diffusivity, mm2/s 47
4.0
Thermal Shock Resistance, points 9.5 to 16
14 to 24

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 83.5 to 86.5
0
Iron (Fe), % 0 to 0.1
70.7 to 77.9
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.25
6.0 to 8.0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 10.6 to 15
0
Residuals, % 0 to 0.4
0