MakeItFrom.com
Menu (ESC)

C32000 Brass vs. AWS E80C-B6

C32000 brass belongs to the copper alloys classification, while AWS E80C-B6 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C32000 brass and the bottom bar is AWS E80C-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 29
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 41
74
Tensile Strength: Ultimate (UTS), MPa 270 to 470
630
Tensile Strength: Yield (Proof), MPa 78 to 390
530

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Melting Completion (Liquidus), °C 1020
1450
Melting Onset (Solidus), °C 990
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
39
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 37
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
4.7
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 42
25
Embodied Water, L/kg 310
71

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
120
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 680
730
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8 to 15
22
Strength to Weight: Bending, points 11 to 16
21
Thermal Diffusivity, mm2/s 47
11
Thermal Shock Resistance, points 9.5 to 16
18

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
4.5 to 6.0
Copper (Cu), % 83.5 to 86.5
0 to 0.35
Iron (Fe), % 0 to 0.1
90.1 to 94.4
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0
0.4 to 1.0
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0 to 0.25
0 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.25 to 0.6
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 10.6 to 15
0
Residuals, % 0
0 to 0.5