MakeItFrom.com
Menu (ESC)

C32000 Brass vs. EN 1.4418 Stainless Steel

C32000 brass belongs to the copper alloys classification, while EN 1.4418 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C32000 brass and the bottom bar is EN 1.4418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 29
16 to 20
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 180 to 280
530 to 620
Tensile Strength: Ultimate (UTS), MPa 270 to 470
860 to 1000
Tensile Strength: Yield (Proof), MPa 78 to 390
540 to 790

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 1020
1450
Melting Onset (Solidus), °C 990
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 37
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
13
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 42
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
130 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 680
730 to 1590
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8 to 15
31 to 36
Strength to Weight: Bending, points 11 to 16
26 to 28
Thermal Diffusivity, mm2/s 47
4.0
Thermal Shock Resistance, points 9.5 to 16
31 to 36

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 83.5 to 86.5
0
Iron (Fe), % 0 to 0.1
73.2 to 80.2
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.8 to 1.5
Nickel (Ni), % 0 to 0.25
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 10.6 to 15
0
Residuals, % 0 to 0.4
0