MakeItFrom.com
Menu (ESC)

C32000 Brass vs. EN 1.4652 Stainless Steel

C32000 brass belongs to the copper alloys classification, while EN 1.4652 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C32000 brass and the bottom bar is EN 1.4652 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 6.8 to 29
45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
81
Shear Strength, MPa 180 to 280
610
Tensile Strength: Ultimate (UTS), MPa 270 to 470
880
Tensile Strength: Yield (Proof), MPa 78 to 390
490

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1020
1460
Melting Onset (Solidus), °C 990
1410
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 160
9.8
Thermal Expansion, µm/m-K 19
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 37
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
34
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 2.6
6.4
Embodied Energy, MJ/kg 42
87
Embodied Water, L/kg 310
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
340
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 680
570
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8 to 15
30
Strength to Weight: Bending, points 11 to 16
25
Thermal Diffusivity, mm2/s 47
2.6
Thermal Shock Resistance, points 9.5 to 16
20

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 83.5 to 86.5
0.3 to 0.6
Iron (Fe), % 0 to 0.1
38.3 to 46.3
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0 to 0.25
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Zinc (Zn), % 10.6 to 15
0
Residuals, % 0 to 0.4
0