MakeItFrom.com
Menu (ESC)

C32000 Brass vs. EN 1.4662 Stainless Steel

C32000 brass belongs to the copper alloys classification, while EN 1.4662 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C32000 brass and the bottom bar is EN 1.4662 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 29
28
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 41
79
Shear Strength, MPa 180 to 280
520 to 540
Tensile Strength: Ultimate (UTS), MPa 270 to 470
810 to 830
Tensile Strength: Yield (Proof), MPa 78 to 390
580 to 620

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
1090
Melting Completion (Liquidus), °C 1020
1430
Melting Onset (Solidus), °C 990
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 37
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
16
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 42
45
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
210
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 680
840 to 940
Stiffness to Weight: Axial, points 7.1
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8 to 15
29 to 30
Strength to Weight: Bending, points 11 to 16
25
Thermal Diffusivity, mm2/s 47
3.9
Thermal Shock Resistance, points 9.5 to 16
22

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 83.5 to 86.5
0.1 to 0.8
Iron (Fe), % 0 to 0.1
62.6 to 70.2
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0 to 0.25
3.0 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.0050
Zinc (Zn), % 10.6 to 15
0
Residuals, % 0 to 0.4
0