MakeItFrom.com
Menu (ESC)

C32000 Brass vs. EN 1.4938 Stainless Steel

C32000 brass belongs to the copper alloys classification, while EN 1.4938 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C32000 brass and the bottom bar is EN 1.4938 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 29
16 to 17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 180 to 280
540 to 630
Tensile Strength: Ultimate (UTS), MPa 270 to 470
870 to 1030
Tensile Strength: Yield (Proof), MPa 78 to 390
640 to 870

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 1020
1460
Melting Onset (Solidus), °C 990
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
30
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 37
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
10
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.3
Embodied Energy, MJ/kg 42
47
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 680
1050 to 1920
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8 to 15
31 to 37
Strength to Weight: Bending, points 11 to 16
26 to 29
Thermal Diffusivity, mm2/s 47
8.1
Thermal Shock Resistance, points 9.5 to 16
30 to 35

Alloy Composition

Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 83.5 to 86.5
0
Iron (Fe), % 0 to 0.1
80.5 to 84.8
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0
0.4 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 0.25
2.0 to 3.0
Nitrogen (N), % 0
0.020 to 0.040
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 10.6 to 15
0
Residuals, % 0 to 0.4
0