MakeItFrom.com
Menu (ESC)

C32000 Brass vs. EN 1.6553 Steel

C32000 brass belongs to the copper alloys classification, while EN 1.6553 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C32000 brass and the bottom bar is EN 1.6553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 29
19 to 21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 270 to 470
710 to 800
Tensile Strength: Yield (Proof), MPa 78 to 390
470 to 670

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 1020
1460
Melting Onset (Solidus), °C 990
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
39
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 37
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
2.7
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.6
Embodied Energy, MJ/kg 42
21
Embodied Water, L/kg 310
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 680
600 to 1190
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.8 to 15
25 to 28
Strength to Weight: Bending, points 11 to 16
23 to 24
Thermal Diffusivity, mm2/s 47
10
Thermal Shock Resistance, points 9.5 to 16
21 to 23

Alloy Composition

Carbon (C), % 0
0.23 to 0.28
Chromium (Cr), % 0
0.4 to 0.8
Copper (Cu), % 83.5 to 86.5
0 to 0.3
Iron (Fe), % 0 to 0.1
95.6 to 98.2
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 0 to 0.25
0.4 to 0.8
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 10.6 to 15
0
Residuals, % 0 to 0.4
0

Comparable Variants