MakeItFrom.com
Menu (ESC)

C32000 Brass vs. EN 2.4608 Nickel

C32000 brass belongs to the copper alloys classification, while EN 2.4608 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C32000 brass and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 6.8 to 29
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
81
Shear Strength, MPa 180 to 280
410
Tensile Strength: Ultimate (UTS), MPa 270 to 470
620
Tensile Strength: Yield (Proof), MPa 78 to 390
270

Thermal Properties

Latent Heat of Fusion, J/g 190
330
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 1020
1460
Melting Onset (Solidus), °C 990
1410
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 160
11
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 37
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
55
Density, g/cm3 8.7
8.5
Embodied Carbon, kg CO2/kg material 2.6
8.4
Embodied Energy, MJ/kg 42
120
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
170
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 680
180
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.8 to 15
20
Strength to Weight: Bending, points 11 to 16
19
Thermal Diffusivity, mm2/s 47
2.9
Thermal Shock Resistance, points 9.5 to 16
16

Alloy Composition

Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 83.5 to 86.5
0
Iron (Fe), % 0 to 0.1
11.4 to 23.8
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.25
44 to 47
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.7 to 1.5
Sulfur (S), % 0
0 to 0.015
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 10.6 to 15
0
Residuals, % 0 to 0.4
0