MakeItFrom.com
Menu (ESC)

C32000 Brass vs. EN 2.4952 Nickel

C32000 brass belongs to the copper alloys classification, while EN 2.4952 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C32000 brass and the bottom bar is EN 2.4952 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 29
17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 41
74
Shear Strength, MPa 180 to 280
700
Tensile Strength: Ultimate (UTS), MPa 270 to 470
1150
Tensile Strength: Yield (Proof), MPa 78 to 390
670

Thermal Properties

Latent Heat of Fusion, J/g 190
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 1020
1350
Melting Onset (Solidus), °C 990
1300
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 37
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
55
Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 2.6
9.8
Embodied Energy, MJ/kg 42
140
Embodied Water, L/kg 310
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
170
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 680
1180
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.8 to 15
38
Strength to Weight: Bending, points 11 to 16
29
Thermal Diffusivity, mm2/s 47
3.1
Thermal Shock Resistance, points 9.5 to 16
33

Alloy Composition

Aluminum (Al), % 0
1.0 to 1.8
Boron (B), % 0
0 to 0.0080
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 83.5 to 86.5
0 to 0.2
Iron (Fe), % 0 to 0.1
0 to 1.5
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.25
65 to 79.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
1.8 to 2.7
Zinc (Zn), % 10.6 to 15
0
Residuals, % 0 to 0.4
0