MakeItFrom.com
Menu (ESC)

C32000 Brass vs. SAE-AISI 4140 Steel

C32000 brass belongs to the copper alloys classification, while SAE-AISI 4140 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C32000 brass and the bottom bar is SAE-AISI 4140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 29
11 to 26
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 180 to 280
410 to 660
Tensile Strength: Ultimate (UTS), MPa 270 to 470
690 to 1080
Tensile Strength: Yield (Proof), MPa 78 to 390
590 to 990

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 1020
1460
Melting Onset (Solidus), °C 990
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
43
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 37
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
2.4
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.5
Embodied Energy, MJ/kg 42
20
Embodied Water, L/kg 310
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
74 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 680
920 to 2590
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.8 to 15
25 to 38
Strength to Weight: Bending, points 11 to 16
22 to 30
Thermal Diffusivity, mm2/s 47
12
Thermal Shock Resistance, points 9.5 to 16
20 to 32

Alloy Composition

Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 83.5 to 86.5
0
Iron (Fe), % 0 to 0.1
96.8 to 97.8
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0
0.75 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 10.6 to 15
0
Residuals, % 0 to 0.4
0