MakeItFrom.com
Menu (ESC)

C32000 Brass vs. N08700 Stainless Steel

C32000 brass belongs to the copper alloys classification, while N08700 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C32000 brass and the bottom bar is N08700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 29
32
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
79
Shear Strength, MPa 180 to 280
410
Tensile Strength: Ultimate (UTS), MPa 270 to 470
620
Tensile Strength: Yield (Proof), MPa 78 to 390
270

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1020
1450
Melting Onset (Solidus), °C 990
1400
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 37
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
32
Density, g/cm3 8.7
8.1
Embodied Carbon, kg CO2/kg material 2.6
6.0
Embodied Energy, MJ/kg 42
82
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
160
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 680
180
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.8 to 15
21
Strength to Weight: Bending, points 11 to 16
20
Thermal Diffusivity, mm2/s 47
3.5
Thermal Shock Resistance, points 9.5 to 16
14

Alloy Composition

Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 83.5 to 86.5
0 to 0.5
Iron (Fe), % 0 to 0.1
42 to 52.7
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.3 to 5.0
Nickel (Ni), % 0 to 0.25
24 to 26
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 10.6 to 15
0
Residuals, % 0 to 0.4
0