MakeItFrom.com
Menu (ESC)

C32000 Brass vs. N08801 Stainless Steel

C32000 brass belongs to the copper alloys classification, while N08801 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C32000 brass and the bottom bar is N08801 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 29
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 180 to 280
570
Tensile Strength: Ultimate (UTS), MPa 270 to 470
860
Tensile Strength: Yield (Proof), MPa 78 to 390
190

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1090
Melting Completion (Liquidus), °C 1020
1390
Melting Onset (Solidus), °C 990
1360
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 37
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
30
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 2.6
5.5
Embodied Energy, MJ/kg 42
79
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
220
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 680
92
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.8 to 15
30
Strength to Weight: Bending, points 11 to 16
25
Thermal Diffusivity, mm2/s 47
3.3
Thermal Shock Resistance, points 9.5 to 16
20

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 83.5 to 86.5
0 to 0.5
Iron (Fe), % 0 to 0.1
39.5 to 50.3
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.25
30 to 34
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.75 to 1.5
Zinc (Zn), % 10.6 to 15
0
Residuals, % 0 to 0.4
0