MakeItFrom.com
Menu (ESC)

C33000 Brass vs. 7021 Aluminum

C33000 brass belongs to the copper alloys classification, while 7021 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C33000 brass and the bottom bar is 7021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 7.0 to 60
9.4
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
26
Shear Strength, MPa 240 to 300
270
Tensile Strength: Ultimate (UTS), MPa 320 to 520
460
Tensile Strength: Yield (Proof), MPa 110 to 450
390

Thermal Properties

Latent Heat of Fusion, J/g 180
380
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 940
630
Melting Onset (Solidus), °C 900
510
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
38
Electrical Conductivity: Equal Weight (Specific), % IACS 29
120

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
41
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
1110
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 11 to 18
44
Strength to Weight: Bending, points 13 to 18
45
Thermal Diffusivity, mm2/s 37
59
Thermal Shock Resistance, points 11 to 17
20

Alloy Composition

Aluminum (Al), % 0
90.7 to 93.7
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 65 to 68
0 to 0.25
Iron (Fe), % 0 to 0.070
0 to 0.4
Lead (Pb), % 0.25 to 0.7
0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.25
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 30.8 to 34.8
5.0 to 6.0
Zirconium (Zr), % 0
0.080 to 0.18
Residuals, % 0
0 to 0.15