MakeItFrom.com
Menu (ESC)

C33000 Brass vs. ACI-ASTM CF8 Steel

C33000 brass belongs to the copper alloys classification, while ACI-ASTM CF8 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is ACI-ASTM CF8 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.0 to 60
55
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 320 to 520
540
Tensile Strength: Yield (Proof), MPa 110 to 450
260

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 130
980
Melting Completion (Liquidus), °C 940
1420
Melting Onset (Solidus), °C 900
1430
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 20
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
16
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 45
44
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
240
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
160
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
19
Strength to Weight: Bending, points 13 to 18
19
Thermal Diffusivity, mm2/s 37
4.3
Thermal Shock Resistance, points 11 to 17
13

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 65 to 68
0
Iron (Fe), % 0 to 0.070
63.8 to 74
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
8.0 to 11
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 30.8 to 34.8
0
Residuals, % 0 to 0.4
0