MakeItFrom.com
Menu (ESC)

C33000 Brass vs. AISI 304Cu Stainless Steel

C33000 brass belongs to the copper alloys classification, while AISI 304Cu stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is AISI 304Cu stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.0 to 60
45
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 240 to 300
370
Tensile Strength: Ultimate (UTS), MPa 320 to 520
530
Tensile Strength: Yield (Proof), MPa 110 to 450
210

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 130
930
Melting Completion (Liquidus), °C 940
1410
Melting Onset (Solidus), °C 900
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
16
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 45
43
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
190
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
19
Strength to Weight: Bending, points 13 to 18
19
Thermal Diffusivity, mm2/s 37
3.5
Thermal Shock Resistance, points 11 to 17
12

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 65 to 68
3.0 to 4.0
Iron (Fe), % 0 to 0.070
63.9 to 72
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 30.8 to 34.8
0
Residuals, % 0 to 0.4
0