MakeItFrom.com
Menu (ESC)

C33000 Brass vs. AISI 409Cb Stainless Steel

C33000 brass belongs to the copper alloys classification, while AISI 409Cb stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is AISI 409Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.0 to 60
24
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
75
Shear Strength, MPa 240 to 300
270
Tensile Strength: Ultimate (UTS), MPa 320 to 520
420
Tensile Strength: Yield (Proof), MPa 110 to 450
200

Thermal Properties

Latent Heat of Fusion, J/g 180
270
Maximum Temperature: Mechanical, °C 130
710
Melting Completion (Liquidus), °C 940
1450
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
8.5
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 45
31
Embodied Water, L/kg 320
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
83
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
100
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
15
Strength to Weight: Bending, points 13 to 18
16
Thermal Diffusivity, mm2/s 37
6.7
Thermal Shock Resistance, points 11 to 17
15

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 65 to 68
0
Iron (Fe), % 0 to 0.070
84.9 to 89.5
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 30.8 to 34.8
0
Residuals, % 0 to 0.4
0