MakeItFrom.com
Menu (ESC)

C33000 Brass vs. ASTM A203 Steel

C33000 brass belongs to the copper alloys classification, while ASTM A203 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is ASTM A203 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.0 to 60
22 to 26
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 240 to 300
330 to 370
Tensile Strength: Ultimate (UTS), MPa 320 to 520
520 to 590
Tensile Strength: Yield (Proof), MPa 110 to 450
290 to 390

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 130
410
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
52
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.4 to 7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 29
8.5 to 8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
3.2 to 4.0
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.6 to 1.7
Embodied Energy, MJ/kg 45
21 to 23
Embodied Water, L/kg 320
50 to 52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
230 to 410
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 18
18 to 21
Strength to Weight: Bending, points 13 to 18
18 to 20
Thermal Diffusivity, mm2/s 37
14
Thermal Shock Resistance, points 11 to 17
15 to 17