MakeItFrom.com
Menu (ESC)

C33000 Brass vs. AWS E320LR

C33000 brass belongs to the copper alloys classification, while AWS E320LR belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is AWS E320LR.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.0 to 60
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 320 to 520
580

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Melting Completion (Liquidus), °C 940
1410
Melting Onset (Solidus), °C 900
1360
Specific Heat Capacity, J/kg-K 390
460
Thermal Expansion, µm/m-K 20
14

Otherwise Unclassified Properties

Base Metal Price, % relative 24
36
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 2.7
6.2
Embodied Energy, MJ/kg 45
87
Embodied Water, L/kg 320
220

Common Calculations

Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 18
20
Strength to Weight: Bending, points 13 to 18
19
Thermal Shock Resistance, points 11 to 17
15

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 65 to 68
3.0 to 4.0
Iron (Fe), % 0 to 0.070
32.7 to 42.5
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
1.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
32 to 36
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 30.8 to 34.8
0
Residuals, % 0 to 0.4
0