MakeItFrom.com
Menu (ESC)

C33000 Brass vs. EN 1.1127 Steel

C33000 brass belongs to the copper alloys classification, while EN 1.1127 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is EN 1.1127 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.0 to 60
14 to 25
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 240 to 300
420 to 480
Tensile Strength: Ultimate (UTS), MPa 320 to 520
660 to 790
Tensile Strength: Yield (Proof), MPa 110 to 450
410 to 580

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
49
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.1
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 45
19
Embodied Water, L/kg 320
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
90 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
440 to 880
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 18
23 to 28
Strength to Weight: Bending, points 13 to 18
22 to 24
Thermal Diffusivity, mm2/s 37
13
Thermal Shock Resistance, points 11 to 17
21 to 25

Alloy Composition

Carbon (C), % 0
0.34 to 0.42
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 65 to 68
0
Iron (Fe), % 0 to 0.070
96.6 to 98.1
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
1.4 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.035
Zinc (Zn), % 30.8 to 34.8
0
Residuals, % 0 to 0.4
0