MakeItFrom.com
Menu (ESC)

C33000 Brass vs. EN 1.4872 Stainless Steel

C33000 brass belongs to the copper alloys classification, while EN 1.4872 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is EN 1.4872 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.0 to 60
28
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
79
Shear Strength, MPa 240 to 300
620
Tensile Strength: Ultimate (UTS), MPa 320 to 520
950
Tensile Strength: Yield (Proof), MPa 110 to 450
560

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 130
1150
Melting Completion (Liquidus), °C 940
1390
Melting Onset (Solidus), °C 900
1340
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
17
Density, g/cm3 8.2
7.6
Embodied Carbon, kg CO2/kg material 2.7
3.3
Embodied Energy, MJ/kg 45
47
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
230
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
780
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 11 to 18
35
Strength to Weight: Bending, points 13 to 18
28
Thermal Diffusivity, mm2/s 37
3.9
Thermal Shock Resistance, points 11 to 17
21

Alloy Composition

Carbon (C), % 0
0.2 to 0.3
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 65 to 68
0
Iron (Fe), % 0 to 0.070
54.2 to 61.6
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
8.0 to 10
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 30.8 to 34.8
0
Residuals, % 0 to 0.4
0