MakeItFrom.com
Menu (ESC)

C33000 Brass vs. EN 1.8946 Steel

C33000 brass belongs to the copper alloys classification, while EN 1.8946 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is EN 1.8946 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.0 to 60
16
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 240 to 300
350
Tensile Strength: Ultimate (UTS), MPa 320 to 520
580
Tensile Strength: Yield (Proof), MPa 110 to 450
390

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 130
420
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
43
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 29
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.7
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 45
23
Embodied Water, L/kg 320
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
82
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
410
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 18
20
Strength to Weight: Bending, points 13 to 18
20
Thermal Diffusivity, mm2/s 37
12
Thermal Shock Resistance, points 11 to 17
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0.25 to 1.4
Copper (Cu), % 65 to 68
0.2 to 0.6
Iron (Fe), % 0 to 0.070
94.8 to 99.5
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 1.1
Nickel (Ni), % 0
0 to 0.7
Niobium (Nb), % 0
0 to 0.065
Phosphorus (P), % 0
0.050 to 0.16
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0
0 to 0.12
Vanadium (V), % 0
0 to 0.14
Zinc (Zn), % 30.8 to 34.8
0
Residuals, % 0 to 0.4
0