MakeItFrom.com
Menu (ESC)

C33000 Brass vs. EN 2.4856 Nickel

C33000 brass belongs to the copper alloys classification, while EN 2.4856 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is EN 2.4856 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.0 to 60
28
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
79
Shear Strength, MPa 240 to 300
570
Tensile Strength: Ultimate (UTS), MPa 320 to 520
880
Tensile Strength: Yield (Proof), MPa 110 to 450
430

Thermal Properties

Latent Heat of Fusion, J/g 180
330
Maximum Temperature: Mechanical, °C 130
1000
Melting Completion (Liquidus), °C 940
1480
Melting Onset (Solidus), °C 900
1430
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 120
10
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
80
Density, g/cm3 8.2
8.6
Embodied Carbon, kg CO2/kg material 2.7
14
Embodied Energy, MJ/kg 45
190
Embodied Water, L/kg 320
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
200
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
440
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 11 to 18
28
Strength to Weight: Bending, points 13 to 18
24
Thermal Diffusivity, mm2/s 37
2.7
Thermal Shock Resistance, points 11 to 17
29

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 65 to 68
0 to 0.5
Iron (Fe), % 0 to 0.070
0 to 5.0
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.8
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.4
Zinc (Zn), % 30.8 to 34.8
0
Residuals, % 0 to 0.4
0