MakeItFrom.com
Menu (ESC)

C33000 Brass vs. EN AC-21000 Aluminum

C33000 brass belongs to the copper alloys classification, while EN AC-21000 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C33000 brass and the bottom bar is EN AC-21000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 7.0 to 60
6.7
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 320 to 520
340
Tensile Strength: Yield (Proof), MPa 110 to 450
240

Thermal Properties

Latent Heat of Fusion, J/g 180
390
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 940
670
Melting Onset (Solidus), °C 900
550
Specific Heat Capacity, J/kg-K 390
880
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 20
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
34
Electrical Conductivity: Equal Weight (Specific), % IACS 29
100

Otherwise Unclassified Properties

Base Metal Price, % relative 24
11
Density, g/cm3 8.2
3.0
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
21
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
390
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
46
Strength to Weight: Axial, points 11 to 18
32
Strength to Weight: Bending, points 13 to 18
36
Thermal Diffusivity, mm2/s 37
49
Thermal Shock Resistance, points 11 to 17
15

Alloy Composition

Aluminum (Al), % 0
93.4 to 95.5
Copper (Cu), % 65 to 68
4.2 to 5.0
Iron (Fe), % 0 to 0.070
0 to 0.35
Lead (Pb), % 0.25 to 0.7
0 to 0.050
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 30.8 to 34.8
0 to 0.1
Residuals, % 0
0 to 0.1