MakeItFrom.com
Menu (ESC)

C33000 Brass vs. C86400 Bronze

Both C33000 brass and C86400 bronze are copper alloys. They have a moderately high 93% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is C86400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 7.0 to 60
17
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 320 to 520
470
Tensile Strength: Yield (Proof), MPa 110 to 450
150

Thermal Properties

Latent Heat of Fusion, J/g 180
170
Maximum Temperature: Mechanical, °C 130
120
Melting Completion (Liquidus), °C 940
880
Melting Onset (Solidus), °C 900
860
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 120
88
Thermal Expansion, µm/m-K 20
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
19
Electrical Conductivity: Equal Weight (Specific), % IACS 29
22

Otherwise Unclassified Properties

Base Metal Price, % relative 24
23
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 45
48
Embodied Water, L/kg 320
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
63
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
110
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 11 to 18
16
Strength to Weight: Bending, points 13 to 18
17
Thermal Diffusivity, mm2/s 37
29
Thermal Shock Resistance, points 11 to 17
16

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.5
Copper (Cu), % 65 to 68
56 to 62
Iron (Fe), % 0 to 0.070
0.4 to 2.0
Lead (Pb), % 0.25 to 0.7
0.5 to 1.5
Manganese (Mn), % 0
0.1 to 1.0
Nickel (Ni), % 0
0 to 1.0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 30.8 to 34.8
34 to 42
Residuals, % 0
0 to 1.0