MakeItFrom.com
Menu (ESC)

C33000 Brass vs. S39274 Stainless Steel

C33000 brass belongs to the copper alloys classification, while S39274 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is S39274 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 7.0 to 60
17
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
81
Shear Strength, MPa 240 to 300
560
Tensile Strength: Ultimate (UTS), MPa 320 to 520
900
Tensile Strength: Yield (Proof), MPa 110 to 450
620

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 940
1480
Melting Onset (Solidus), °C 900
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
24
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 2.7
4.3
Embodied Energy, MJ/kg 45
60
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
140
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
940
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
32
Strength to Weight: Bending, points 13 to 18
26
Thermal Diffusivity, mm2/s 37
4.2
Thermal Shock Resistance, points 11 to 17
25

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 65 to 68
0.2 to 0.8
Iron (Fe), % 0 to 0.070
57 to 65.6
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 30.8 to 34.8
0
Residuals, % 0 to 0.4
0