MakeItFrom.com
Menu (ESC)

C33200 Brass vs. ASTM A182 Grade F22V

C33200 brass belongs to the copper alloys classification, while ASTM A182 grade F22V belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C33200 brass and the bottom bar is ASTM A182 grade F22V.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 7.0 to 60
21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
74
Shear Strength, MPa 240 to 300
420
Tensile Strength: Ultimate (UTS), MPa 320 to 520
670
Tensile Strength: Yield (Proof), MPa 110 to 450
460

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
460
Melting Completion (Liquidus), °C 930
1470
Melting Onset (Solidus), °C 900
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
39
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
4.2
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.6
2.5
Embodied Energy, MJ/kg 44
35
Embodied Water, L/kg 320
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 960
570
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 17
24
Strength to Weight: Bending, points 13 to 17
22
Thermal Diffusivity, mm2/s 37
11
Thermal Shock Resistance, points 11 to 17
19

Alloy Composition

Boron (B), % 0
0 to 0.0020
Calcium (Ca), % 0
0 to 0.015
Carbon (C), % 0
0.11 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 65 to 68
0 to 0.2
Iron (Fe), % 0 to 0.070
94.6 to 96.4
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 29 to 33.5
0
Residuals, % 0 to 0.4
0