MakeItFrom.com
Menu (ESC)

C33200 Brass vs. EN 1.4150 Stainless Steel

C33200 brass belongs to the copper alloys classification, while EN 1.4150 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C33200 brass and the bottom bar is EN 1.4150 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 7.0 to 60
20
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 240 to 300
460
Tensile Strength: Ultimate (UTS), MPa 320 to 520
730
Tensile Strength: Yield (Proof), MPa 110 to 450
430

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 130
840
Melting Completion (Liquidus), °C 930
1420
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 380
490
Thermal Conductivity, W/m-K 120
23
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
8.5
Density, g/cm3 8.2
7.6
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 44
42
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 960
470
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 17
27
Strength to Weight: Bending, points 13 to 17
24
Thermal Diffusivity, mm2/s 37
6.2
Thermal Shock Resistance, points 11 to 17
27

Alloy Composition

Carbon (C), % 0
0.45 to 0.6
Chromium (Cr), % 0
15 to 16.5
Copper (Cu), % 65 to 68
0
Iron (Fe), % 0 to 0.070
79 to 82.8
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.4
Nickel (Ni), % 0
0 to 0.4
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
1.3 to 1.7
Sulfur (S), % 0
0 to 0.010
Vanadium (V), % 0
0.2 to 0.4
Zinc (Zn), % 29 to 33.5
0
Residuals, % 0 to 0.4
0