MakeItFrom.com
Menu (ESC)

C33200 Brass vs. EN 1.4823 Stainless Steel

C33200 brass belongs to the copper alloys classification, while EN 1.4823 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C33200 brass and the bottom bar is EN 1.4823 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 7.0 to 60
3.4
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 320 to 520
620
Tensile Strength: Yield (Proof), MPa 110 to 450
290

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 930
1400
Melting Onset (Solidus), °C 900
1360
Specific Heat Capacity, J/kg-K 380
490
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
16
Density, g/cm3 8.2
7.6
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 44
43
Embodied Water, L/kg 320
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
17
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 960
200
Stiffness to Weight: Axial, points 7.1
15
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 11 to 17
23
Strength to Weight: Bending, points 13 to 17
21
Thermal Diffusivity, mm2/s 37
4.5
Thermal Shock Resistance, points 11 to 17
17

Alloy Composition

Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 65 to 68
0
Iron (Fe), % 0 to 0.070
60.9 to 70.7
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.0 to 6.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 29 to 33.5
0
Residuals, % 0 to 0.4
0