MakeItFrom.com
Menu (ESC)

C33200 Brass vs. EN 1.6368 Steel

C33200 brass belongs to the copper alloys classification, while EN 1.6368 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C33200 brass and the bottom bar is EN 1.6368 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 7.0 to 60
18
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 240 to 300
410 to 430
Tensile Strength: Ultimate (UTS), MPa 320 to 520
660 to 690
Tensile Strength: Yield (Proof), MPa 110 to 450
460 to 490

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
410
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
3.4
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.7
Embodied Energy, MJ/kg 44
22
Embodied Water, L/kg 320
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 960
580 to 650
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 17
23 to 24
Strength to Weight: Bending, points 13 to 17
21 to 22
Thermal Diffusivity, mm2/s 37
11
Thermal Shock Resistance, points 11 to 17
20

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.040
Carbon (C), % 0
0 to 0.17
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 65 to 68
0.5 to 0.8
Iron (Fe), % 0 to 0.070
95.1 to 97.2
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.25 to 0.5
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 29 to 33.5
0
Residuals, % 0 to 0.4
0