MakeItFrom.com
Menu (ESC)

C33200 Brass vs. K93603 Alloy

C33200 brass belongs to the copper alloys classification, while K93603 alloy belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C33200 brass and the bottom bar is K93603 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 320 to 520
490 to 810

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Melting Completion (Liquidus), °C 930
1430
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 380
460
Thermal Expansion, µm/m-K 20
12

Otherwise Unclassified Properties

Base Metal Price, % relative 24
25
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 2.6
4.8
Embodied Energy, MJ/kg 44
66
Embodied Water, L/kg 320
120

Common Calculations

Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 11 to 17
17 to 27
Strength to Weight: Bending, points 13 to 17
17 to 24
Thermal Shock Resistance, points 11 to 17
15 to 25

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.25
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 65 to 68
0
Iron (Fe), % 0 to 0.070
61.8 to 64
Lead (Pb), % 1.5 to 2.5
0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.6
Nickel (Ni), % 0
36
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 29 to 33.5
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.4
0