MakeItFrom.com
Menu (ESC)

C33500 Brass vs. AISI 304 Stainless Steel

C33500 brass belongs to the copper alloys classification, while AISI 304 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C33500 brass and the bottom bar is AISI 304 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 3.0 to 28
8.0 to 43
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 220 to 360
400 to 690
Tensile Strength: Ultimate (UTS), MPa 340 to 650
580 to 1180
Tensile Strength: Yield (Proof), MPa 120 to 420
230 to 860

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
710
Melting Completion (Liquidus), °C 930
1450
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
15
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 45
43
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0 to 160
86 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 860
140 to 1870
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 22
21 to 42
Strength to Weight: Bending, points 13 to 21
20 to 32
Thermal Diffusivity, mm2/s 37
4.2
Thermal Shock Resistance, points 11 to 22
12 to 25

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.1
66.5 to 74
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 33.8 to 37.8
0
Residuals, % 0 to 0.4
0