MakeItFrom.com
Menu (ESC)

C33500 Brass vs. C63020 Bronze

Both C33500 brass and C63020 bronze are copper alloys. They have 64% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C33500 brass and the bottom bar is C63020 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 3.0 to 28
6.8
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
44
Shear Strength, MPa 220 to 360
600
Tensile Strength: Ultimate (UTS), MPa 340 to 650
1020
Tensile Strength: Yield (Proof), MPa 120 to 420
740

Thermal Properties

Latent Heat of Fusion, J/g 170
230
Maximum Temperature: Mechanical, °C 120
230
Melting Completion (Liquidus), °C 930
1070
Melting Onset (Solidus), °C 900
1020
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 20
18

Otherwise Unclassified Properties

Base Metal Price, % relative 24
29
Density, g/cm3 8.1
8.2
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 45
58
Embodied Water, L/kg 320
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0 to 160
63
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 860
2320
Stiffness to Weight: Axial, points 7.2
8.0
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 12 to 22
34
Strength to Weight: Bending, points 13 to 21
27
Thermal Diffusivity, mm2/s 37
11
Thermal Shock Resistance, points 11 to 22
35

Alloy Composition

Aluminum (Al), % 0
10 to 11
Chromium (Cr), % 0
0 to 0.050
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 62 to 65
74.7 to 81.8
Iron (Fe), % 0 to 0.1
4.0 to 5.5
Lead (Pb), % 0.25 to 0.7
0 to 0.030
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
4.2 to 6.0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 33.8 to 37.8
0 to 0.3
Residuals, % 0
0 to 0.5