MakeItFrom.com
Menu (ESC)

C33500 Brass vs. N08366 Stainless Steel

C33500 brass belongs to the copper alloys classification, while N08366 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C33500 brass and the bottom bar is N08366 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 3.0 to 28
34
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 53 to 91
82
Shear Modulus, GPa 40
80
Shear Strength, MPa 220 to 360
390
Tensile Strength: Ultimate (UTS), MPa 340 to 650
590
Tensile Strength: Yield (Proof), MPa 120 to 420
240

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
33
Density, g/cm3 8.1
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.2
Embodied Energy, MJ/kg 45
84
Embodied Water, L/kg 320
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0 to 160
160
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 860
150
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 22
20
Strength to Weight: Bending, points 13 to 21
19
Thermal Diffusivity, mm2/s 37
3.4
Thermal Shock Resistance, points 11 to 22
13

Alloy Composition

Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.1
42.4 to 50.5
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
23.5 to 25.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 33.8 to 37.8
0
Residuals, % 0 to 0.4
0