MakeItFrom.com
Menu (ESC)

C34000 Brass vs. 5056 Aluminum

C34000 brass belongs to the copper alloys classification, while 5056 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C34000 brass and the bottom bar is 5056 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
67
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
25
Tensile Strength: Ultimate (UTS), MPa 340 to 650
290 to 460

Thermal Properties

Latent Heat of Fusion, J/g 170
400
Maximum Temperature: Mechanical, °C 120
190
Melting Completion (Liquidus), °C 930
640
Melting Onset (Solidus), °C 890
570
Specific Heat Capacity, J/kg-K 380
910
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
29
Electrical Conductivity: Equal Weight (Specific), % IACS 29
99

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 2.6
9.0
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1180

Common Calculations

Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
51
Strength to Weight: Axial, points 11 to 22
30 to 48
Strength to Weight: Bending, points 13 to 21
36 to 50
Thermal Diffusivity, mm2/s 37
53
Thermal Shock Resistance, points 11 to 22
13 to 20

Alloy Composition

Aluminum (Al), % 0
93 to 95.4
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 62 to 65
0 to 0.1
Iron (Fe), % 0 to 0.1
0 to 0.4
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 0
0.050 to 0.2
Silicon (Si), % 0
0 to 0.3
Zinc (Zn), % 33 to 37.2
0 to 0.1
Residuals, % 0
0 to 0.15