MakeItFrom.com
Menu (ESC)

C34000 Brass vs. 6082 Aluminum

C34000 brass belongs to the copper alloys classification, while 6082 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C34000 brass and the bottom bar is 6082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
69
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 340 to 650
140 to 340

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 930
650
Melting Onset (Solidus), °C 890
580
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 120
160
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
42
Electrical Conductivity: Equal Weight (Specific), % IACS 29
140

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 2.6
8.3
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1170

Common Calculations

Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 11 to 22
14 to 35
Strength to Weight: Bending, points 13 to 21
21 to 40
Thermal Diffusivity, mm2/s 37
67
Thermal Shock Resistance, points 11 to 22
6.0 to 15

Alloy Composition

Aluminum (Al), % 0
95.2 to 98.3
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 62 to 65
0 to 0.1
Iron (Fe), % 0 to 0.1
0 to 0.5
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0
0.4 to 1.0
Silicon (Si), % 0
0.7 to 1.3
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 33 to 37.2
0 to 0.2
Residuals, % 0
0 to 0.15