MakeItFrom.com
Menu (ESC)

C34000 Brass vs. AISI 316L Stainless Steel

C34000 brass belongs to the copper alloys classification, while AISI 316L stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C34000 brass and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 53 to 91
80
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 340 to 650
530 to 1160

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
870
Melting Completion (Liquidus), °C 930
1400
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
19
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.9
Embodied Energy, MJ/kg 45
53
Embodied Water, L/kg 320
150

Common Calculations

Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 22
19 to 41
Strength to Weight: Bending, points 13 to 21
18 to 31
Thermal Diffusivity, mm2/s 37
4.1
Thermal Shock Resistance, points 11 to 22
12 to 25

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.1
62 to 72
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 33 to 37.2
0
Residuals, % 0 to 0.4
0