MakeItFrom.com
Menu (ESC)

C34000 Brass vs. C68100 Brass

Both C34000 brass and C68100 brass are copper alloys. They have a moderately high 93% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C34000 brass and the bottom bar is C68100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 340 to 650
380

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 120
120
Melting Completion (Liquidus), °C 930
890
Melting Onset (Solidus), °C 890
870
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 120
98
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
24
Electrical Conductivity: Equal Weight (Specific), % IACS 29
27

Otherwise Unclassified Properties

Base Metal Price, % relative 24
23
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 45
47
Embodied Water, L/kg 320
330

Common Calculations

Stiffness to Weight: Axial, points 7.1
7.3
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 11 to 22
13
Strength to Weight: Bending, points 13 to 21
15
Thermal Diffusivity, mm2/s 37
32
Thermal Shock Resistance, points 11 to 22
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Copper (Cu), % 62 to 65
56 to 60
Iron (Fe), % 0 to 0.1
0.25 to 1.3
Lead (Pb), % 0.8 to 1.5
0 to 0.050
Manganese (Mn), % 0
0.010 to 0.5
Silicon (Si), % 0
0.040 to 0.15
Tin (Sn), % 0
0.75 to 1.1
Zinc (Zn), % 33 to 37.2
36.4 to 43
Residuals, % 0
0 to 0.5