MakeItFrom.com
Menu (ESC)

C34000 Brass vs. C69710 Brass

Both C34000 brass and C69710 brass are copper alloys. They have 83% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C34000 brass and the bottom bar is C69710 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 340 to 650
470

Thermal Properties

Latent Heat of Fusion, J/g 170
240
Maximum Temperature: Mechanical, °C 120
160
Melting Completion (Liquidus), °C 930
930
Melting Onset (Solidus), °C 890
880
Specific Heat Capacity, J/kg-K 380
400
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 21
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
26
Density, g/cm3 8.1
8.3
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 45
44
Embodied Water, L/kg 320
310

Common Calculations

Stiffness to Weight: Axial, points 7.1
7.3
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 11 to 22
16
Strength to Weight: Bending, points 13 to 21
16
Thermal Diffusivity, mm2/s 37
12
Thermal Shock Resistance, points 11 to 22
16

Alloy Composition

Arsenic (As), % 0
0.030 to 0.060
Copper (Cu), % 62 to 65
75 to 80
Iron (Fe), % 0 to 0.1
0 to 0.2
Lead (Pb), % 0.8 to 1.5
0.5 to 1.5
Manganese (Mn), % 0
0 to 0.4
Silicon (Si), % 0
2.5 to 3.5
Zinc (Zn), % 33 to 37.2
13.8 to 22
Residuals, % 0
0 to 0.5