MakeItFrom.com
Menu (ESC)

C34000 Brass vs. Z21721 Zinc

C34000 brass belongs to the copper alloys classification, while Z21721 zinc belongs to the zinc alloys. They have a modest 36% of their average alloy composition in common, which, by itself, doesn't mean much. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C34000 brass and the bottom bar is Z21721 zinc.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
87
Poisson's Ratio 0.31
0.25
Shear Modulus, GPa 40
35
Tensile Strength: Ultimate (UTS), MPa 340 to 650
150

Thermal Properties

Latent Heat of Fusion, J/g 170
110
Maximum Temperature: Mechanical, °C 120
90
Melting Completion (Liquidus), °C 930
410
Melting Onset (Solidus), °C 890
390
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 120
110
Thermal Expansion, µm/m-K 21
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
27
Electrical Conductivity: Equal Weight (Specific), % IACS 29
37

Otherwise Unclassified Properties

Base Metal Price, % relative 24
11
Density, g/cm3 8.1
6.6
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 45
53
Embodied Water, L/kg 320
340

Common Calculations

Stiffness to Weight: Axial, points 7.1
7.3
Stiffness to Weight: Bending, points 19
22
Strength to Weight: Axial, points 11 to 22
6.4
Strength to Weight: Bending, points 13 to 21
9.6
Thermal Diffusivity, mm2/s 37
44
Thermal Shock Resistance, points 11 to 22
4.8

Alloy Composition

Aluminum (Al), % 0
0 to 0.0020
Cadmium (Cd), % 0
0 to 0.070
Copper (Cu), % 62 to 65
0 to 0.0050
Iron (Fe), % 0 to 0.1
0 to 0.010
Lead (Pb), % 0.8 to 1.5
0 to 1.0
Titanium (Ti), % 0
0 to 0.020
Zinc (Zn), % 33 to 37.2
98.9 to 100
Residuals, % 0 to 0.4
0