MakeItFrom.com
Menu (ESC)

C34200 Brass vs. 7022 Aluminum

C34200 brass belongs to the copper alloys classification, while 7022 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C34200 brass and the bottom bar is 7022 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Elongation at Break, % 3.0 to 17
6.3 to 8.0
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
26
Shear Strength, MPa 230 to 360
290 to 320
Tensile Strength: Ultimate (UTS), MPa 370 to 650
490 to 540
Tensile Strength: Yield (Proof), MPa 150 to 420
390 to 460

Thermal Properties

Latent Heat of Fusion, J/g 170
380
Maximum Temperature: Mechanical, °C 120
200
Melting Completion (Liquidus), °C 910
640
Melting Onset (Solidus), °C 890
480
Specific Heat Capacity, J/kg-K 380
870
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
21
Electrical Conductivity: Equal Weight (Specific), % IACS 29
65

Otherwise Unclassified Properties

Base Metal Price, % relative 24
10
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 2.6
8.5
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 98
29 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 870
1100 to 1500
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 13 to 22
47 to 51
Strength to Weight: Bending, points 14 to 20
47 to 50
Thermal Diffusivity, mm2/s 37
54
Thermal Shock Resistance, points 12 to 22
21 to 23

Alloy Composition

Aluminum (Al), % 0
87.9 to 92.4
Chromium (Cr), % 0
0.1 to 0.3
Copper (Cu), % 62 to 65
0.5 to 1.0
Iron (Fe), % 0 to 0.1
0 to 0.5
Lead (Pb), % 1.5 to 2.5
0
Magnesium (Mg), % 0
2.6 to 3.7
Manganese (Mn), % 0
0.1 to 0.4
Silicon (Si), % 0
0 to 0.5
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 32 to 36.5
4.3 to 5.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15