MakeItFrom.com
Menu (ESC)

C34200 Brass vs. C86200 Bronze

Both C34200 brass and C86200 bronze are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C34200 brass and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 3.0 to 17
21
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 370 to 650
710
Tensile Strength: Yield (Proof), MPa 150 to 420
350

Thermal Properties

Latent Heat of Fusion, J/g 170
190
Maximum Temperature: Mechanical, °C 120
160
Melting Completion (Liquidus), °C 910
940
Melting Onset (Solidus), °C 890
900
Specific Heat Capacity, J/kg-K 380
410
Thermal Conductivity, W/m-K 120
35
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
23
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 45
49
Embodied Water, L/kg 320
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 98
120
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 870
540
Stiffness to Weight: Axial, points 7.1
7.8
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 13 to 22
25
Strength to Weight: Bending, points 14 to 20
22
Thermal Diffusivity, mm2/s 37
11
Thermal Shock Resistance, points 12 to 22
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Copper (Cu), % 62 to 65
60 to 66
Iron (Fe), % 0 to 0.1
2.0 to 4.0
Lead (Pb), % 1.5 to 2.5
0 to 0.2
Manganese (Mn), % 0
2.5 to 5.0
Nickel (Ni), % 0
0 to 1.0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 32 to 36.5
22 to 28
Residuals, % 0
0 to 1.0