MakeItFrom.com
Menu (ESC)

C34200 Brass vs. S43940 Stainless Steel

C34200 brass belongs to the copper alloys classification, while S43940 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C34200 brass and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 3.0 to 17
21
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 53 to 91
76
Shear Modulus, GPa 40
77
Shear Strength, MPa 230 to 360
310
Tensile Strength: Ultimate (UTS), MPa 370 to 650
490
Tensile Strength: Yield (Proof), MPa 150 to 420
280

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
890
Melting Completion (Liquidus), °C 910
1440
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
12
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 45
38
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 98
86
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 870
200
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 22
18
Strength to Weight: Bending, points 14 to 20
18
Thermal Diffusivity, mm2/s 37
6.8
Thermal Shock Resistance, points 12 to 22
18

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 18.5
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.1
78.2 to 82.1
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.1 to 0.6
Zinc (Zn), % 32 to 36.5
0
Residuals, % 0 to 0.4
0