MakeItFrom.com
Menu (ESC)

C34500 Brass vs. AISI 316 Stainless Steel

C34500 brass belongs to the copper alloys classification, while AISI 316 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C34500 brass and the bottom bar is AISI 316 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 12 to 28
8.0 to 55
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 220 to 260
350 to 690
Tensile Strength: Ultimate (UTS), MPa 340 to 430
520 to 1180
Tensile Strength: Yield (Proof), MPa 120 to 180
230 to 850

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
590
Melting Completion (Liquidus), °C 910
1400
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
19
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.9
Embodied Energy, MJ/kg 45
53
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
85 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 160
130 to 1820
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 15
18 to 41
Strength to Weight: Bending, points 13 to 16
18 to 31
Thermal Diffusivity, mm2/s 37
4.1
Thermal Shock Resistance, points 11 to 14
11 to 26

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.15
62 to 72
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 32 to 36.5
0
Residuals, % 0 to 0.4
0