MakeItFrom.com
Menu (ESC)

C34500 Brass vs. ASTM A182 Grade F6b

C34500 brass belongs to the copper alloys classification, while ASTM A182 grade F6b belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C34500 brass and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 12 to 28
18
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 220 to 260
530
Tensile Strength: Ultimate (UTS), MPa 340 to 430
850
Tensile Strength: Yield (Proof), MPa 120 to 180
710

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
750
Melting Completion (Liquidus), °C 910
1450
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
8.0
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.2
Embodied Energy, MJ/kg 45
30
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
140
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 160
1280
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 15
30
Strength to Weight: Bending, points 13 to 16
26
Thermal Diffusivity, mm2/s 37
6.7
Thermal Shock Resistance, points 11 to 14
31

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 62 to 65
0 to 0.5
Iron (Fe), % 0 to 0.15
81.2 to 87.1
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 32 to 36.5
0
Residuals, % 0 to 0.4
0